Paper_CV_3 目标检测

[toc]

计算机视觉任务:

图像分类、目标定位、目标检测、目标跟踪,语义分割,实例分割;

detection

目标检测领域中主流的两大类方法:

dense detector: 例如DPM,YOLO,RetinaNet,FCOS。在dense detector中, 大量的object candidates例如sliding-windows,anchor-boxes, reference-points等被提前预设在图像网格或者特征图网格上,然后直接预测这些candidates到gt的scaling/offest和物体类别。

dense-to-sparse detector: RCNN家族,对一组sparse的candidates预测和分类

Detection模型算法整理

RCNN内容整理RCNN, FastRCNN,FasterRCNN,YOLO,SSD

发展历史:

R-CNN

Fast R-CNN

Faster R-CNN

Mask R-CNN (目标检测 + 像素分割)

SSD (Single Shot MultiBox Defender)

YOLO (You Only Look Once)

YOLO_V2

YOLO_V3

DSSD

IoU-Net(旷视科技)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
SPPNet: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014
R-CNN: Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014
Fast R-CNN, ICCV, 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS, 2015
FPN: Feature Pyramid Networks for Object Detection, CVPR, 2017
SSD: Single Shot MultiBox Detector, ECCV, 2016
DSSD: Deconvolutional Single Shot Detector, CVPR, 2017
FSSD: Feature Fusion Single Shot Multibox Detector, arXiv, 2017
YOLO-v1: You Only Look Once: Unified, Real-Time Object Detection, ECCV, 2016
YOLO-v2: YOLO9000: Better, Faster, Stronger, arXiv, 2016
YOLO-v3: YOLOv3: An Incremental Improvement
R-FCN: Object Detection via Region-based Fully Convolutional Networks, NIPS, 2016
Deformable Convolutional Networks, ICCV, 2017
Faster R-CNN+SSD: Single-Shot Refinement Neural Network for Object Detection, CVPR, 2018
CornerNet: Detecting Objects as Paired Keypoints, ECCV, 2018
IoUNet: Acquisition of Localization Confidence for Accurate Object Detection, ECCV, 2018

盘点性能最强的One-stage目标检测算法

image-20200708145221603

TimeLine

img

《Speed/accuracy trade-offs for modern convolutional object detectors》2017
翻译:http://blog.gwyve.com/blog/2017/04/10/reading-note-Speed-Accuracy.html

  • SSD、Faster R-CNN、R-FCN
  • 三个object Detection模型的总结

Two-Stage

DeNet

CoupleNet

Faster R-CNN

D-FCN

Mask R-CNN

Soft-NMS

Fitness R-CNN

Cascade R-CNN

Deform-v2

SNIPER

R-FCN

PANet

TridentNet

One-Stage

YOLOv2

SSD

model

DSSD512

RetinaNet

ConerNet

CenterNet: Keypoint Triplets for Object Detection

mAP:44.9

FPS:3

arXiv:https://arxiv.org/abs/1904.08189

https://github.com/Duankaiwen/CenterNet

CenterNet: Objects as Points

mAP:42.1

FPS:7.8

arXiv:https://arxiv.org/abs/1904.07850

https://github.com/xingyizhou/CenterNet

FCOS

YOLO 3

pytorch Yolo3

pytorch Object Detect & Trace

RefineNet511

Swim Transformer 微软

Refernce

https://zhuanlan.zhihu.com/p/59398728

盘点性能最强的One-stage目标检测算法2019-08-08