[toc]
计算机视觉任务:
图像分类、目标定位、目标检测、目标跟踪,语义分割,实例分割;
目标检测领域中主流的两大类方法:
dense detector: 例如DPM,YOLO,RetinaNet,FCOS。在dense detector中, 大量的object candidates例如sliding-windows,anchor-boxes, reference-points等被提前预设在图像网格或者特征图网格上,然后直接预测这些candidates到gt的scaling/offest和物体类别。
dense-to-sparse detector: RCNN家族,对一组sparse的candidates预测和分类
Detection模型算法整理
RCNN内容整理RCNN, FastRCNN,FasterRCNN,YOLO,SSD
发展历史:
R-CNN
Fast R-CNN
Faster R-CNN
Mask R-CNN (目标检测 + 像素分割)
SSD (Single Shot MultiBox Defender)
YOLO (You Only Look Once)
YOLO_V2
YOLO_V3
DSSD
IoU-Net(旷视科技)
1 | SPPNet: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014 |
TimeLine
《Speed/accuracy trade-offs for modern convolutional object detectors》2017
翻译:http://blog.gwyve.com/blog/2017/04/10/reading-note-Speed-Accuracy.html
- SSD、Faster R-CNN、R-FCN
- 三个object Detection模型的总结
Two-Stage
DeNet
CoupleNet
Faster R-CNN
- NIPS 2015
- PDF.v3
D-FCN
Mask R-CNN
Soft-NMS
Fitness R-CNN
Cascade R-CNN
Deform-v2
SNIPER
R-FCN
PANet
TridentNet
One-Stage
YOLOv2
SSD
- ECCV 2016
- PDF.v5 arXiv:1512.02325.pdf
- github
DSSD512
RetinaNet
ConerNet
CenterNet: Keypoint Triplets for Object Detection
mAP:44.9
FPS:3
arXiv:https://arxiv.org/abs/1904.08189
https://github.com/Duankaiwen/CenterNet
CenterNet: Objects as Points
mAP:42.1
FPS:7.8
arXiv:https://arxiv.org/abs/1904.07850
https://github.com/xingyizhou/CenterNet