Paper-CV-cnn_geometric

[toc]

CNN Geometric 中文介绍

论文1: CNN Geometric

Convolutional neural network architecture for geometric matching

卷积神经网络结构用于几何匹配

I. Rocco, R. Arandjelović and J. Sivic. Convolutional neural network architecture for geometric matching. CVPR 2017 [website][arXiv]

架构:

阶段1:仿射变换 estimates an affine transformation

阶段2:薄板样条转换 thin-plate spline (TPS) transformation

1578368378239

Started:

  • demo.py demonstrates the results on the ProposalFlow dataset (Proposal Flow Dataset 的示范结果)
  • train.py is the main training script (训练入口)
  • eval_pf.py evaluates on the ProposalFlow dataset (用于评估dataset)

Trained models

Using Streetview-synth dataset + VGG

Using Pascal-synth dataset + VGG

Using Pascal-synth dataset + ResNet-101

Streetview: 是通过对来自东京时间机器数据集[4]的图像应用合成变换生成的,该数据集包含了东京的谷歌街景图像

Pascal: created from the training set of Pascal VOC 2011 [16]

论文2: DGC-NET

DGC-Net: Dense Geometric Correspondence Network

稠密几何对应网络

架构:

四个组成部分:

  • 特征金字塔(feature pyramid creator)siamese VGG16 双重连接;类似Vgg16的网络架构,进行特征提取
  • 关联层 (correlation layer):5 convolutional blocks (Conv-BN-ReLU) to estimate a 2D dense correspondence field
  • 扭曲层(warp layer):
  • matchability译码器 (matchability decoder ):It contains four convolutional layers outputting a probability map (parametrized as a sigmoid

1578368506854

1578369779325