[TOC]
计算机视觉领域
https://www.paperswithcode.com/area/computer-vision
UMD Faces 面部数据集
UMD Faces Dataset
UMD Faces Dataset 是一个面部数据集,主要用于身份鉴定研究,它拥有 8501 个主题共计 367,920 个面孔。该数据集分为静止图像和视频帧两部分,其中静止图像包含 367,888 张图,共计 8277 个主题;视频帧则包含 22,000 个主题视频,共计 370 万个带注释的视频帧。
https://hyper.ai/datasets/5537
3D Face
300W
300 Faces In-the-Wild Challenge (300-W)
官网介绍:https://ibug.doc.ic.ac.uk/resources/300-W/
中文介绍:https://blog.csdn.net/lgh0824/article/details/88536215
3DDFA的生成数据
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
300W-3D
300W-3D-Face
300W-LP 合成了300W的大姿态人脸图像。
1 | [300W-3D]: https://drive.google.com/file/d/0B7OEHD3T4eCkRFRPSXdFWEhRdlE/view?usp=sharing |
项目:3DDFA
AFLW2000-3D由AFLW数据库的前2000张图片及其三维信息组成。三维信息由3DMM重建(Blanz et.al A morphable model for the synthesis of 3d faces, SIGGRAPH’99)得到,并且包含68个特征点的三维信息。该数据库的三维数据精准度存在争议。
————————————————
1 | /media/simon/新加卷1/dataset/3d_face/AFLW2000/ |
1 | 具体包含以下内容: |
image00040.mat
3D Body
Human 3.6M
常用于3D人体姿态估计
11个人
Diversity and Size
- • 3.6 million 3D human poses and corresponding images
- • 11 professional actors (6 male, 5 female)
- • 17 scenarios (discussion, smoking, taking photo, talking on the phone…)
Accurate Capture and Synchronization
- • High-resolution 50Hz video from 4 calibrated cameras
- • Accurate 3D joint positions and joint angles from high-speed motion capture system
- • Pixel-level 24 body part labels for each configuration
- • Time-of-flight range data
- • 3D laser scans of the actors
- • Accurate background subtraction, person bounding boxes
Support for Development
- • Precomputed image descriptors
- • Software for visualization and discriminative human pose prediction
- • Performance evaluation on withheld test set
FAUST 2014
- 300个2D扫描人体数据
数据库 | 网址 | header 2 |
---|---|---|
FAUST | http://faust.is.tue.mpg.de/ | A data set containing 300 real, high-resolution human scans, with automatically computed ground-truth correspondences. 一个包含300个真实,高分辨率人体扫描的数据集,具有自动计算的地面实况对应关系(Max Planck Tubingen) |
Dynamic FAUST | 3D人体动态数据库, 提供40,000个原始网格和对齐网格的数据集 |
SAESAR
SMPL使用的数据集
CAESAR http://store.sae.org/caesar/ 美国和欧洲的表面人体测量资源项目
10,000美元,2,400名男性和女性
Dyma
使用十个对象的40,000多次扫描
TOSCA
dataset contains synthetic meshes of fixed topology with artist-defined deformations.
数据集包含具有艺术家定义的变形的固定拓扑的合成网格。
synthetic dataset that is widely used for evaluation of mesh registration methods. It provides 80 artificially created meshes of animals and people (with 3 subjects in a dozen different poses each).
SHREC
为TOSCA添加了各种⼈造噪声⽹格,
SCAPE
Buff
Given static 3D scans or 3D scan sequences (in pink), we estimate the naked shape under clothing (beige)
给定3D扫描序列,我们的模型评估不穿衣服的人体。
includes high resolution 3D scan sequences of 3 males and 3 females in different clothing styles.
3男3女的高分辨率的穿不同衣服的数据集。
参考资料:
开源数据库统计:
https://blog.csdn.net/m0_37570854/article/details/88736189
3D人体重建技术:
https://graphics.soe.ucsc.edu/data/BodyModels/index.html
- SCAPE - (paper website (data) - The correspondence between the meshes above is identical to that in SCAPE
- FAUST - (website-data-code) - different people in different poses
- BodyLabs - (web) - Company commercializing body model tools
- MPI - (website-data-code) - different people in different poses from a different MPI lab
- MPII Human Shape (website-data-code) - CAESAE dataset processed by MPI
- CAESAR - (website-data) - Sells complete CAESAR dataset with more measurements and authorized to provide commercial license.
- other - (web) - Other data I find around my lab that might be helpful to someone
Web Face Recognition Training Datasets (Updating)
CASIA-Webface (10K ids/0.5M images) [1]
CelebA (10K ids/0.2M images) [2]
UMDFace (8K ids/0.37M images) [3]
VGG2 (9K ids/3.31M images) [4]
VGG2-Face HD()
90G
MS1M-IBUG (85K ids/3.8M images) [5,6]
MS1M-ArcFace (85K ids/5.8M images) [5,7] (Recommend)
Asian-Celeb (94K ids/2.8M images)[8] (Recommend)
baidu faces_glintasia.zip
dropbox faces_glintasia.zip
DeepGlint (181K ids/6.75M images) [8] (Recommend)
IMDB-Face (59K ids/1.7M images) [9]
Celeb500k (500K ids/50M images) [10]
MegaFace (672K ids/4.7M images) [11]
Face Recognition Validation Datasets
CFP-FP (500 ids/7K images/7K pairs)[12]
AgeDB-30 (570 ids/12,240 images/6K pairs)[13,6]
LFW (5749 ids/13233 images/6K pairs)[14]
CALFW (5749 ids/13233 images/6K pairs)[15]
CPLFW (5749 ids/13233 images/6K pairs)[16]
Face Recognition Image Test Datasets
MegaFace
IJB (IJB-B, IJB-C)
TrillionPairs
NIST
Face Recognition Video Test Datasets
YTF
IQIYI
Reference
[1] Dong Yi, Zhen Lei, Shengcai Liao, Stan Z. Li. Learning Face Representation from Scratch. arXiv:1411.7923, 2014.
[2] Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang. Deep Learning Face Attributes in the Wild, ICCV, 2015.
[3] Bansal Ankan, Nanduri Anirudh, Castillo Carlos D, Ranjan Rajeev, Chellappa, Rama. UMDFaces: An Annotated Face Dataset for Training Deep Networks, arXiv:1611.01484v2, 2016.
[4] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, Andrew Zisserman. VGGFace2: A dataset for recognising faces across pose and age. FG, 2018.
[5] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. ECCV, 2016.
[6] Jiankang Deng, Yuxiang Zhou, Stefanos Zafeiriou. Marginal loss for deep face recognition, CVPRW, 2017.
[7] Jiankang Deng, Jia Guo, Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition, arXiv:1801.07698, 2018.
[8] http://trillionpairs.deepglint.com/
[9] Wang Fei, Chen Liren, Li Cheng, Huang Shiyao, Chen Yanjie, Qian Chen, Loy, Chen Change. The Devil of Face Recognition is in the Noise, ECCV, 2018.
[10] Cao Jiajiong, Li Yingming, Zhang Zhongfei, Celeb-500K: A Large Training Dataset for Face Recognition, ICIP, 2018.
[11] Nech Aaron, Kemelmacher-Shlizerman Ira, Level Playing Field For Million Scale Face Recognition, CVPR, 2017.
[12] Sengupta Soumyadip, Chen Jun-Cheng, Castillo Carlos, Patel Vishal M, Chellappa Rama, Jacobs David W, Frontal to profile face verification in the wild, WACV, 2016.
[13] Moschoglou, Stylianos and Papaioannou, Athanasios and Sagonas, Christos and Deng, Jiankang and Kotsia, Irene and Zafeiriou, Stefanos, Agedb: the first manually collected, in-the-wild age database, CVPRW, 2017.
[14] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, 2007.
[15] Zheng Tianyue, Deng Weihong, Hu Jiani, Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments, arXiv:1708.08197, 2017.
[16] Zheng, Tianyue, and Weihong Deng. Cross-Pose LFW: A Database for Studying Cross-Pose Face Recognition in Unconstrained Environments, 2018.