import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit from PIL import ImageDraw
from yolov3_to_onnx import download_file from data_processing import PreprocessYOLO, PostprocessYOLO, ALL_CATEGORIES
import sys, os sys.path.insert(1, os.path.join(sys.path[0], "..")) import common
TRT_LOGGER = trt.Logger()
defdraw_bboxes(image_raw, bboxes, confidences, categories, all_categories, bbox_color='blue'): """Draw the bounding boxes on the original input image and return it. Keyword arguments: image_raw -- a raw PIL Image bboxes -- NumPy array containing the bounding box coordinates of N objects, with shape (N,4). categories -- NumPy array containing the corresponding category for each object, with shape (N,) confidences -- NumPy array containing the corresponding confidence for each object, with shape (N,) all_categories -- a list of all categories in the correct ordered (required for looking up the category name) bbox_color -- an optional string specifying the color of the bounding boxes (default: 'blue') """ draw = ImageDraw.Draw(image_raw) print(bboxes, confidences, categories) for box, score, category in zip(bboxes, confidences, categories): x_coord, y_coord, width, height = box left = max(0, np.floor(x_coord + 0.5).astype(int)) top = max(0, np.floor(y_coord + 0.5).astype(int)) right = min(image_raw.width, np.floor(x_coord + width + 0.5).astype(int)) bottom = min(image_raw.height, np.floor(y_coord + height + 0.5).astype(int))
defget_engine(onnx_file_path, engine_file_path=""): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" defbuild_engine(): """Takes an ONNX file and creates a TensorRT engine to run inference with""" with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_workspace_size = 1 << 30# 1GB builder.max_batch_size = 1 # Parse model file ifnot os.path.exists(onnx_file_path): print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path)) exit(0) print('Loading ONNX file from path {}...'.format(onnx_file_path)) with open(onnx_file_path, 'rb') as model: print('Beginning ONNX file parsing') parser.parse(model.read()) print('Completed parsing of ONNX file') print('Building an engine from file {}; this may take a while...'.format(onnx_file_path)) engine = builder.build_cuda_engine(network) print("Completed creating Engine") with open(engine_file_path, "wb") as f: f.write(engine.serialize()) return engine
if os.path.exists(engine_file_path): # If a serialized engine exists, use it instead of building an engine. print("Reading engine from file {}".format(engine_file_path)) with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return build_engine()
defmain(): """Create a TensorRT engine for ONNX-based YOLOv3-608 and run inference."""
# Try to load a previously generated YOLOv3-608 network graph in ONNX format: onnx_file_path = 'yolov3.onnx' engine_file_path = "yolov3.trt" # Download a dog image and save it to the following file path: input_image_path = download_file('dog.jpg', 'https://github.com/pjreddie/darknet/raw/f86901f6177dfc6116360a13cc06ab680e0c86b0/data/dog.jpg', checksum_reference=None)
# Two-dimensional tuple with the target network's (spatial) input resolution in HW ordered input_resolution_yolov3_HW = (608, 608) # Create a pre-processor object by specifying the required input resolution for YOLOv3 preprocessor = PreprocessYOLO(input_resolution_yolov3_HW) # Load an image from the specified input path, and return it together with a pre-processed version image_raw, image = preprocessor.process(input_image_path) # Store the shape of the original input image in WH format, we will need it for later shape_orig_WH = image_raw.size
# Output shapes expected by the post-processor output_shapes = [(1, 255, 19, 19), (1, 255, 38, 38), (1, 255, 76, 76)] # Do inference with TensorRT trt_outputs = [] with get_engine(onnx_file_path, engine_file_path) as engine, engine.create_execution_context() as context: inputs, outputs, bindings, stream = common.allocate_buffers(engine) # Do inference print('Running inference on image {}...'.format(input_image_path)) # Set host input to the image. The common.do_inference function will copy the input to the GPU before executing. inputs[0].host = image trt_outputs = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
# Before doing post-processing, we need to reshape the outputs as the common.do_inference will give us flat arrays. trt_outputs = [output.reshape(shape) for output, shape in zip(trt_outputs, output_shapes)]
postprocessor_args = {"yolo_masks": [(6, 7, 8), (3, 4, 5), (0, 1, 2)], # A list of 3 three-dimensional tuples for the YOLO masks "yolo_anchors": [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), # A list of 9 two-dimensional tuples for the YOLO anchors (59, 119), (116, 90), (156, 198), (373, 326)], "obj_threshold": 0.6, # Threshold for object coverage, float value between 0 and 1 "nms_threshold": 0.5, # Threshold for non-max suppression algorithm, float value between 0 and 1 "yolo_input_resolution": input_resolution_yolov3_HW}
# Run the post-processing algorithms on the TensorRT outputs and get the bounding box details of detected objects boxes, classes, scores = postprocessor.process(trt_outputs, (shape_orig_WH)) # Draw the bounding boxes onto the original input image and save it as a PNG file obj_detected_img = draw_bboxes(image_raw, boxes, scores, classes, ALL_CATEGORIES) output_image_path = 'dog_bboxes.png' obj_detected_img.save(output_image_path, 'PNG') print('Saved image with bounding boxes of detected objects to {}.'.format(output_image_path))