感知模块发展
CNN(2011-2016)—— RNN+GAN(2016-2018)—— BEV(2018-2020)—— Transformer+BEV(2020至 今)—— 占用网络(2022至今)
可以看一下特斯拉智能驾驶迭代历程:
BEV + Transformer
鸟瞰图为2D图像,会缺失一些空间高度信息,无法真实反映物体在3D空间的实际占用体积, 故而在BEV中更关心静止物体(如路沿、车道线等),而空间目标的识别(如物体3D结构)难以识别
占用网络
- 占用网络:现存三维表示方法(体素、网格、点云)在储存、结构和是否利于学习方面均不够完全理想,而占用网络基于学习将三维曲面表示为深度神经网络分类器的连续决策边界,可以在没有激光雷达提供点云数据的情况下对3D环境进行重建,且相较于激光雷达还可以更好地将感知到的3D几何信息与语义信息融合,得到更加准确的三维场景信息