Simon Shi的小站

人工智能,机器学习, 强化学习,大模型,自动驾驶

0%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import print_function

import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from PIL import ImageDraw

from yolov3_to_onnx import download_file
from data_processing import PreprocessYOLO, PostprocessYOLO, ALL_CATEGORIES

import sys, os
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common

TRT_LOGGER = trt.Logger()

def draw_bboxes(image_raw, bboxes, confidences, categories, all_categories, bbox_color='blue'):
"""Draw the bounding boxes on the original input image and return it.

Keyword arguments:
image_raw -- a raw PIL Image
bboxes -- NumPy array containing the bounding box coordinates of N objects, with shape (N,4).
categories -- NumPy array containing the corresponding category for each object,
with shape (N,)
confidences -- NumPy array containing the corresponding confidence for each object,
with shape (N,)
all_categories -- a list of all categories in the correct ordered (required for looking up
the category name)
bbox_color -- an optional string specifying the color of the bounding boxes (default: 'blue')
"""
draw = ImageDraw.Draw(image_raw)
print(bboxes, confidences, categories)
for box, score, category in zip(bboxes, confidences, categories):
x_coord, y_coord, width, height = box
left = max(0, np.floor(x_coord + 0.5).astype(int))
top = max(0, np.floor(y_coord + 0.5).astype(int))
right = min(image_raw.width, np.floor(x_coord + width + 0.5).astype(int))
bottom = min(image_raw.height, np.floor(y_coord + height + 0.5).astype(int))

draw.rectangle(((left, top), (right, bottom)), outline=bbox_color)
draw.text((left, top - 12), '{0} {1:.2f}'.format(all_categories[category], score), fill=bbox_color)

return image_raw

def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine

if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()

def main():
"""Create a TensorRT engine for ONNX-based YOLOv3-608 and run inference."""

# Try to load a previously generated YOLOv3-608 network graph in ONNX format:
onnx_file_path = 'yolov3.onnx'
engine_file_path = "yolov3.trt"
# Download a dog image and save it to the following file path:
input_image_path = download_file('dog.jpg',
'https://github.com/pjreddie/darknet/raw/f86901f6177dfc6116360a13cc06ab680e0c86b0/data/dog.jpg', checksum_reference=None)

# Two-dimensional tuple with the target network's (spatial) input resolution in HW ordered
input_resolution_yolov3_HW = (608, 608)
# Create a pre-processor object by specifying the required input resolution for YOLOv3
preprocessor = PreprocessYOLO(input_resolution_yolov3_HW)
# Load an image from the specified input path, and return it together with a pre-processed version
image_raw, image = preprocessor.process(input_image_path)
# Store the shape of the original input image in WH format, we will need it for later
shape_orig_WH = image_raw.size

# Output shapes expected by the post-processor
output_shapes = [(1, 255, 19, 19), (1, 255, 38, 38), (1, 255, 76, 76)]
# Do inference with TensorRT
trt_outputs = []
with get_engine(onnx_file_path, engine_file_path) as engine, engine.create_execution_context() as context:
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
# Do inference
print('Running inference on image {}...'.format(input_image_path))
# Set host input to the image. The common.do_inference function will copy the input to the GPU before executing.
inputs[0].host = image
trt_outputs = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)

# Before doing post-processing, we need to reshape the outputs as the common.do_inference will give us flat arrays.
trt_outputs = [output.reshape(shape) for output, shape in zip(trt_outputs, output_shapes)]

postprocessor_args = {"yolo_masks": [(6, 7, 8), (3, 4, 5), (0, 1, 2)], # A list of 3 three-dimensional tuples for the YOLO masks
"yolo_anchors": [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), # A list of 9 two-dimensional tuples for the YOLO anchors
(59, 119), (116, 90), (156, 198), (373, 326)],
"obj_threshold": 0.6, # Threshold for object coverage, float value between 0 and 1
"nms_threshold": 0.5, # Threshold for non-max suppression algorithm, float value between 0 and 1
"yolo_input_resolution": input_resolution_yolov3_HW}

postprocessor = PostprocessYOLO(**postprocessor_args)

# Run the post-processing algorithms on the TensorRT outputs and get the bounding box details of detected objects
boxes, classes, scores = postprocessor.process(trt_outputs, (shape_orig_WH))
# Draw the bounding boxes onto the original input image and save it as a PNG file
obj_detected_img = draw_bboxes(image_raw, boxes, scores, classes, ALL_CATEGORIES)
output_image_path = 'dog_bboxes.png'
obj_detected_img.save(output_image_path, 'PNG')
print('Saved image with bounding boxes of detected objects to {}.'.format(output_image_path))

if __name__ == '__main__':
main()

对极约束

  • 2D-2D,根据特征点,恢复相机的运动R,t

两步走:

  • 1 根据配对点的像素位置,(8点法)求出 E 或者 F
  • 2 根据 E 或者 F,(SVD分解) 求出 R; t。

基础矩阵 F

  • 基础矩阵,不知道内参,外参的情况;

  • 单应矩阵,已知内参

本质矩阵 E

  • 3x3的矩阵

$$
E = \hat{t}R
$$

  • 典型用法:8点法,求解相机运动,R, t

单应矩阵 H

  • 本质矩阵的特殊应用,特征点在同一个面,只需要4对点

三角测量

  • 求得两帧下点的深度,可以确定它们的空间坐标(世界坐标系)

Secrets of RLHF in Large Language Models

论文链接:https://arxiv.org/pdf/2307.04964.pdf

仓库链接:https://github.com/OpenLMLab/MOSS-RLHF

研究人员探究了PPO算法的高级版本PPO-max,可以有效提高策略模型的训练稳定性,并基于主要实验结果,综合分析了RLHF与SFT模型和ChatGPT的能力对比。

RLHF go

人工智能助手的训练过程包括三个主要阶段:有监督微调(SFT)、奖励模型(RM)训练和奖励模型上的近端策略优化(PPO)。

Avata-Driver 2D

在AIGC领域中,虚拟数字人技术一般分为2D虚拟数字人和3D虚拟数字人两条路线,前者包括唇型驱动、动作驱动、TTS、高分辨率生成等相关算法。本文详细介绍了2D虚拟数字人的整体框架,每个步骤的原理和对应的开源代码,以及如何落地应用。

AIGC-小ç讲车

  • chatGPT: 生成 prompt 和文案

  • Stable diffusion: 用 prompt 生成人像

  • ç: 生成讲述文案的虚拟数字人

Loop:

使用 chatGPT 生成用于图像生成的prompt

使用 chatGPT 生成用于图像生成的prompt

使用 chatGPT 生成用于讲述的文案

生成讲述文案的虚拟数字人

GANs

基于GAN的说话人驱动:talking face generation解读_mb60e8123127ed0的技术博客_51CTO博客

1、方法分类

目前talking face generation方法主要可以归于2类:

(1) 直接法: 直接学习从音频(audio)到视频帧的映射(audio2image);

(2) 间接法: 利用中间模态表征(一般是人脸的2D、3D landmarks特征)来连接音频输入和视频输出,模型被解藕成二个部分: audio2landmark,landmark2image

口型驱动

学术

传统的 Lipsync(唇音同步)方法

  • 语音驱动的说话人视频合成(Audio-driven Talking Face Generation)

1)合成的视频画面应具有较高的保真度;

2)合成的人脸面部表情应与输入的驱动语音保证高度对齐。

1、【浙大】GeneFace: Generalized and High-Fidelity Audio-Driven 3D Talking Face Synthesis

论文链接:https://arxiv.org/abs/2301.13430

代码链接 :https://github.com/yerfor/GeneFace

浙江大学与字节跳动,https://redian.news/wxnews/250671

  • st1:语音->表情动作 (hubBERT->语音表征–3DMM人脸关键点表示)

  • st2:动作域适应

  • st3:动作渲染视频

https://redian.news/wxnews/250671

Relate

由浅入深了解Diffusion Model

ENV:

Eigen

1
cmake .. -DEigen3_DIR=/mnt/hgfs/space_1604/in

opencv 4.6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/home/simon/workspace/opencv-3.4.15/build


sudo apt-get install libvtk5-dev

或者

sudo apt-get isntall libvtk6-dev


cmake -DWITH_VTK=ON ..

sudo make

sudo make install

1
2
3
4
5
6
7
8
9
10
11
12
,Budget,Income,Expenses,Debt
June,5000,8000,4000,6000
July,3000,1000,4000,3000
Aug,5000,7000,6000,3000
Sep,7000,2000,3000,1000
Oct,6000,5000,4000,2000
Nov,4000,3000,5000,
type: line
title: Monthly Revenue
x.title: Amount
y.title: Month
y.suffix: $